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Preface by the editors 

The first textbook on analytic geometry was written in Latin by the Dutch 
statesman and mathematician Jan de Witt. It is entitled Elementa Curvarum 
Linearum, Elements of curves, and consists of two volumes. The first volume, 
liber primus, presents the geometric generation of the conics. The second volume, 
liber secundus, deals with the classifications of quadratic curves. The second 
volume forms the core of the Elementa Curvarum Linearum, while the first 
volume only serves as an introduction. The basis for this textbook, which was first 
published in 1659, lies in the ideas that Descartes developed in his book 
Géométrie (1637). 
 
Albert Grootendorst prepared the English translation of the first volume, liber 
primus, which was published by Springer in 2000. In addition to the parallel 
presentation of the Latin text and its English translation, this includes a general 
introduction, a summary with a complete survey of the theorems (without proofs), 
annotations, and two appendices.  This edition is partly based on the Dutch 
translation by Grootendorst, which was published in 1997 by the Centrum 
Wiskunde & Informatica in Amsterdam. The Dutch translation of the second 
volume, liber secundus, by Grootendorst, was published in 2003 by the Centrum 
Wiskunde & Informatica. This book has the same format as both the Dutch and 
English translation of the first volume: in addition to the text and its trans-lation, it 
includes a general introduction, a summary of the theorems, annotations, and an 
appendix.  
 
Grootendorst received much help from Miente Bakker in preparing the publication 
of both the Dutch and English translations. Due to his premature death in 
December 2004, Grootendorst was unable to complete the English edition of the 
second volume. At the time of his death, Grootendorst had almost completed the 
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translation of the Latin text into English. His plan was to also translate the 
additional material of the Dutch edition into English. Jan Aarts completed the 
translation of the Latin text into English. Reinie Erné translated the additional 
material from the Dutch edition into English. Miente Bakker did the editorial work 
including preparing the index. 
 
The Latin text that is used for this edition of the liber secundus is taken from the 
second edition of 1863 by the publisher Blaeu in Amsterdam; we are indebted to 
K.F. van Eijk, treasurer of the library of the Delft University of Technology, for 
providing access to it. Many thanks go to Tobias Baanders of the Centrum 
Wiskunde & Informatica  for the additional figures illustrating the introduction, 
summary and annotations.  
 
In concluding we give the last paragraph of Grootendorst’s Preface of the Dutch 
edition of the liber secundus, adapted to the present situation: 
 
This marks the completion of the English translation of the Elementa Curvarum 
Linearum, the magnum opus of the Dutch statesman Jan de Witt who was one of 
the greatest mathematicians of the 17th century and who might have been the 
greatest, had he not been distracted by so many state affairs. To quote Christiaan 
Huygens: 

Nullam aeque saeculum geometrarum ferax fuisse arbitro, inter quos vir ille, si 
negotiis minus distringeretur vel principem locum obtinere posset. [In my view no 
century has been so rich in mathematicians, amongst whom this man (J. de Witt) 
might have taken the first place, had he been less distracted by state affairs.] 

We hope that this translation makes the work of the great scientist Jan de Witt 
accessible to a broad group of today’s mathematicians. 
 
 
Amsterdam, June 2009 
 
The editors¸ Jan Aarts, Reinie Erné, and Miente Bakker 
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1  

Introduction 

1. The second part of Jan de Witt´s Elementa Curvarum Linearum is the essence 
of the whole work. The first part was merely a necessary preparation to Liber 
Secundus, which is referred to in the correspondence and in Part I as the tractatus 
(or compositio) locorum planorum et solidorum. 
 This last text was delivered to Van Schooten at the beginning of 1658. In a 
letter to Jan de Witt dated 8 February 1658, Van Schooten expressed his great 
appreciation for this work and promised to study it carefully and to help in any 
way he could with the preparation for publication.  
 On 6 October 1658, Jan de Witt received the results of Van Schooten’s efforts, 
with an accompanying letter in which he wrote that  

… so veel ‘t mij doenlijck geweest is, accuraet (heeft) naergesien… [ ... I have 
checked (it) as carefully as I could...] 

In particular, the following passage is important: 
Hebbe in het uytschryven de voorszeide calculatie op monsieur Des Cartes manier 
gestelt en op eenige weynige plaetsen de woorden wat verandert, om doorgaens, so 
veel ’t mogelijck was, overal de tael sijnder geometrie, die nu by meest alle de 
fraeyste verstanden de allerbekendste is, te gebruycken…[In my exposition, I have 
written the aforementioned computation in the manner of Mr. Des Cartes and have 
changed the words in a few places in order to use, as much as possible, the 
language of his geometry, which is now the most current among almost all 
distinguished minds...] 

Jan de Witt immediately replied with a letter of October 8, in which he expressed 
his gratitude, but added that he had no time to spend on this work. Nevertheless, 
he emphasized that this text  
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Niet anders en mach voor de dach comen dan voorhenen gaende eene corte 
verhandelinge van de nature ende proprieteyten der cromme liniën. [Must not be 
published without being preceded by a brief treatise on the nature and properties of 
curved lines.] 

Apparently he had already finished this brief treatise, because he joined it to the 
letter, with the request to  

… insgelijkx eens te doorsien ende de faulten … te verbeteren [… look it over and 
correct any mistakes...] 

In the final publication this treatise became Liber Primus; it gives a mechanical 
description of the known conics as plane curves, absque ulla solida 
consideratione, that is, without any spatial considerations. 
 The style of Liber Primus is clearly different from that of Liber Secundus; 
indeed, in the first part the method of Descartes is not used at all, all calculations 
are done according to the geometric algebra of Euclid (as explained in Note 
[3.30]; see also [26]). 
 The definitions given there serve as the basis for Liber Secundus, whose core 
can be described as the characterization of the conics by means of equations in 
two variables x and y which can be seen as the coordinates (which are line 
segments) of the points on the curves, and the deduction of the conics’ properties 
from this, all using the analytic method. 
 This results in a tightly ordered enumeration of Theoremata (theorems) and 
Problemata (problems). We will come back to the structure of this work in 
Section 10 of this introduction. It is written more in the rigid style of the Elements 
of Euclid than in the style of the Géométrie of Descartes and can rightly be 
considered the first systematic textbook of analytic geometry in the Cartesian 
tradition. The first book that can be seen as a successor of this work is Elementa 
Matheseos Universae of Christian von Wolff (1679−1754). 
 To help understand the significance of Liber Secundus, we will attempt to 
place it in the context of its time by giving some well-known, relevant facts.  
 
2. Whenever the origin of analytical geometry is brought up, the names of René 
Descartes (1596−1650) and Pierre de Fermat (1601−1665) immediately come to 
mind. Their sources of inspiration, however, lie in a more distant past: the Greek 
antiquity, with names such as Euclid (ca. 300 BC), Archimedes (287−212 BC), 
Apollonius of Perga (second half of the third century BC), and Pappus of 
Alexandria (first half of the fourth century AD). Moreover, the tools that were 
implicitly passed on to them, and which helped make their results possible, date 
mostly from the late Middle Ages and the Renaissance. Of that time only Nicole 
Oresme (ca. 1320−1382) and François Viète (1540−1603) are mentioned here. 
 
3. The Collectio (Συναγωγη) of Pappus occupies a central place in the 
developmental history of analytic geometry. Several causes can be given for this.  
 This collected work consisting of eight books gives an extensive overview of 
the work of some thirty mathematicians, from Euclid to Pappus’s contemporary 
Hierius, and was composed by a capable mathematician. It derives its importance 
not only from the discussion of works known to us, but also in particular from the 
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sometimes concise remarks concerning writings that are now lost. This is the most 
important aspect of the Collectio; because of this it led to and provided support for 
the reconstruction of these lost works. 
 Because of the renewed interest in Greek and Roman culture, including 
mathematics, which flourished in the Renaissance, much attention was given to 
this reconstruction in the 16th and 17th century. 
 Important contributions were made by the Frenchman Viète with his 
Apollonius Gallus (1600); by the Dutchman Snellius with his Apollonius Batavus 
(1607/1608); by the Italian (by origin) Ghetaldi with his Apollonius Redivivus 
(1607/1613); as well as by Fermat with his reconstruction of the Loci Plani of 
Apollonius, which he presented to his friend Prade around 1630 and which was 
one of his sources of inspiration in his setting up of analytic geometry. Frans van 
Schooten Jr. also attempted to reconstruct the Loci of Apollonius. We find the 
results of this attempt in his Excercitationum Mathematicarum Libri V 
(1656/1657). 
 In this respect the seventh book of the Collectio deserves particular attention. It 
not only contains many theorems (more than 400) from lost work, but also a 
definition of the fundamental terms analysis (αναλυσις) and synthesis (συνθεσις). 
It is known as the treasury of analysis (τοπος αναλυοµενος). 
 In the opening words of this work, dedicated to his son Hermodorus, Pappus 
describes analysis as a subject that is intended for those who already master the 
well-known Elements and now wish to study problem solving. 
 Pappus names Euclid, Apollonius, and Aristaeus the Elder (ca. 350 BC) as 
founders of the analytic method. Heath, however, suspects that the term analysis 
was already known in the school of Pythagoras (see [33]). 
 Diogenes Laertius (3rd century AD) attributed the term to Plato, but it is 
probable that Plato laid the emphasis rather on the associated synthesis. In the 
synthetic setting up of the Elements of Euclid the term analysis does not come up 
explicitly, but it may have played a role in the heuristics.  In some manuscripts of 
the Elements it appears in a marginal comment; Heiberg assumes that this is an 
insertion by Hero (ca. 60 AD), which refers to the research of Theaitetus 
(410−368 BC) or of Eudoxus (408−355 BC). 
 Right after the introduction Pappus gives a definition of analysis and of 
synthesis, as follows:  

Analysis is a method where one assumes that which is sought, and from this, 
through a series of implications, arrives at something which is agreed upon on the 
basis of synthesis; because in analysis, one assumes that which is sought to be 
known, proved, or constructed, and examines what this is a consequence of and 
from what this latter follows, so that by backtracking we end up with something that 
is already known or is part of the starting points of the theory; we call such a 
method analysis; it is, in a sense, a solution in reversed direction. In synthesis we 
work in the opposite direction: we assume the last result of the analysis to be true. 
Then we put the causes from analysis in their natural order, as consequences, and 
by putting these together we obtain the proof or the construction of that which is 
sought. We call this synthesis. 
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 Let us add two remarks. First of all a linguistic observation: the word analysis 
is described by Pappus as anapalin lusis (ανα παλιν λυσις), which is the Greek 
term for solution in reversed order; synthesis (συνθεσις) means composition.  
 Next let us point out the remarkable manner in which analysis is described. If 
we indicate the stages of the analysis with 21,aa ,…, where 1a  is that which is 
sought, then, formally, Pappus’s reasoning is not 21 aa →  but 21 aa ← , where 

2a  is a sufficient condition for 1a .    
 
Pappus distinguishes two types of analysis:  
1.  Theoretic or zetetic analysis (from zèteo, to search for), which concerns the 

truth of a statement. 
2.  Problematic or poristic analysis (from porizo, to provide; a porism is halfway 

between a problem and a theorem), which concerns the constructability or 
computability. 

When giving the definition of these two types of analysis, Pappus further remarks 
that for these we must assume that which is sought to be true or possible, and 
then, by drawing logical conclusions, end up with something known to be true or 
possible or known to be untrue or impossible. In the first case we must then 
follow the reasoning in reverse order to conclude that the assumption was correct. 
With this, Pappus stresses that each step in the reasoning must be reversible. In 
the second case the assumption is of course incorrect. 
 Viète would give other meanings to these terms and distinguish a third type of 
analysis, the rhetic or exegetic analysis. We will come back to this later. 
 
Yet, the Collectio not only derives its significance for the development of analytic 
geometry from the references it contains and from the attention it gives to the 
terms analysis and synthesis, but also in particular from problem it states, which 
would become known as one of the Problems of Pappus.  
 With modern notation we can state this problem as follows:  
Given three or four straight lines )(,, 4321 llll in the plane, we ask for the set of 
points P whose distances from )(,, 4321 dddd satisfy  

i.  2
321 : ddd        = constant (in the case of three lines), 

ii.  4321 : dddd  = constant (in the case of four lines). 
These distances can be taken perpendicularly, but also in a direction that is 
determined separately for each line il . It is clear that this choice does not change 
the nature of the problem. 
 A possible generalization to more than four lines is obvious and is already 
mentioned by Pappus himself (Collectio vii, 38−40; ed. Hultsch p. 680, and Y. 
Thomas, Part II, pp. 601−603).   
 In the case of five lines 521 ,...,, lll , the distances are 521 ,...,, ddd .  
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Pappus considers the two parallelepipeds that are enclosed by 321 ,, ddd  and by 

54,dd  and a randomly chosen line segment a. The condition on P is now that the 
ratio 54321 : dadddd  is constant.  
 For six lines the distances are 621 ,...,, ddd . The condition is then that the ratio 

654321 : dddddd  is constant.  The case of four lines is shown in Figure 1.3.1. Let 
us already mention that in this case the loci in question will prove to be conics. 
 

 

 
 

FIGURE 1.3.1 
 
In the general case of an even number of lines, say 2n, the condition becomes that 
the ratio  
   d ddddd nnnn 22121 :... …++ is constant,  
and in the case of an odd number of lines, say 2n+1, the condition becomes that 
the ratio  

   d ddaddd nnnn 1232121 :... ++++ … is constant, 
where a is again a randomly chosen line segment.  
 For the context of this problem we refer the reader to Section 1 of the 
appendix. 
 
4. Of those who were inspired by the Collectio of Pappus, in particular Book VII, 
we first mention François Viète (1540−1603), who worked as a lawyer for the 
government and in his spare time was an avid mathematician.  
 We mentioned him above in relation to his Apollonius Gallus, a reconstruction 
of works of Apollonius, and also in relation to his views on the terms analysis and 
synthesis as presented by Pappus. 
 His most important mathematical work is considered to be In artem analyticem 
isagoge, which was published in 1591 in Tours. This work begins with a chapter 
on the term analysis, which already came up for discussion above. Instead of the 
bipartition of Pappus, he suggests his own division into three parts. For him 
zetetic analysis is the determination of an equation or proportion (with known 
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coefficients) that the unknown quantity must satisfy. In subsequent computations 
this quantity is considered known. In poristic analysis, the correctness of a 
theorem is studied using this equation or proportion, while in rhetic or exegetic 
analysis the unknown quantity is deduced from it. In fact, Viète gives an algebraic 
character to the term analysis, which he describes as doctrina bene inveniendi in 
mathematicis, that is, the science of correct discovery in mathematics. 
 After this, he gives a consequent letter notation for arithmetic, as a result of 
which this arithmetic could eventually develop into an abstract algebra. Although 
he had predecessors in this area, such as Diophantus (ca. 250 AD) with his 
syncopated arithmetic notation and Bombelli (1526−1572), and Descartes 
improved his system, he was the first to introduce the use of vowels for unknown 
quantities and consonants for known quantities, both in capital letters. He also 
systematically used the signs + and −, but at first continued to describe equalities 
with words, later using the sign ~. The equality sign later introduced by Descartes, 

, remained in use for a long time until it was permanently replaced by the sign = 
of Recorde. For powers of quantities Viète had a verbal description, which clearly 
betrays his geometric ideas. He had different notations for powers of known and 
of unknown quantities. He described the 1st, 2nd, 3rd, and 4th powers of known 
quantities using longitudo (or latitudo), planum, solidum, and plano-planum, and 
those of unknown quantities using latus (or radix), quadratum, cubus, and 
quadrato-quadratum. He also had analogous expressions for higher powers, up to 
and including the ninth power.  
An example:              B A quadratum + C planum A aequalia D solido, 
corresponds to our:   .322 dxcbx =+  
 His geometric interpretation of products not only is reflected in his notation, 
but also forces him to use homogeneous formulas because, according to a 
condition of Aristotle, only similar quantities can and may be compared to each 
other. The terms of an equation are also called the homogenea.  
 It is remarkable that he speaks of powers higher than the third power in spite of 
the fact that these have no geometric meaning. Descartes would solve this 
dilemma later. Of course the innovations of Viète include more than those we 
mention here. These, however, are of exceptional importance: this is where the 
distinction arises between logistica numerosa, computing with explicit numbers, 
and logistica speciosa, computing with letters.  As a result one could speak of 
equations in general terms and no longer had to rely on specific examples. 
Moreover, thanks to the logistica speciosa, the dependence of the solution on the 
coefficients of the equation becomes clear.  
 Viète used his notations in particular to solve geometric problems. To this end 
he transformed the problem into an algebraic equation in one variable, which he 
solved using his new technique, whereupon he constructed the solution, whenever 
possible. The ‘construction of equations’, that is, their geometric resolution, was 
henceforth done by means of algebra instead of the geometric and verbal 
techniques of antiquity (see also [26] and [27]). A well-known and much cited 
example is the determination of the sides of a rectangle when their ratio and the 
area of the rectangle are given. 
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 Of course a construction with ruler and compass only succeeded if the 
equation was of degree at most two. Equations of degree three or four could be 
solved algebraically, but their roots could in general not be constructed with these 
instruments. For these cases and others Viète suggested the use of other tools. In 
this he did not follow the method already used by Menaechmus (ca. 350 BC), 
namely using common points of curves. As an example of that we give, in our 
notation, the method used by Menaechmus to find both geometric means x and y 
of a and b.   
 From a : x = x : y = y : b follow ayx =2  and bxy =2  (and also xy = ab), so 

that bxayax 2224 ==  and therefore bax 23 = .  Menaechmus solved this 
equation by intersecting two conics he had discovered, of which he knew the 
geometric properties. In modern terms: he intersected the parabola determined by 

ayx =2  with the parabola characterized by .2 bxy =  Let us already mention at 
this point that Descartes and Fermat would continue using this method with 
curves of higher degree.  
 The above clearly shows that Viète did not get around to analytic geometry: he 
did not draw curves other than a straight line or a circle, and did not use 
coordinate systems. But the most important shortcoming is that he restricted 
himself to so-called ‘determinate’ equations, that is, equations in one variable with 
constant coefficients. He did not know equations in two variables, as a result of 
which he could not describe loci (τοποι) algebraically, where a locus is the set of 
all points whose location is determined by stated conditions.  
 
5.  The first fundamental contribution of Descartes to the foundations of analytic 
geometry is the creation of its own algebraic apparatus. This includes a notation 
that we still use today, except for the equal sign for which, as mentioned before, 
Descartes chose . In this, though not only in this, he surpassed Viète, a fact of 
which he was aware: …je commence en cela par ou Viète a finy. [...in this matter, 
I begin where Viète has left off].  
 In short, the innovation of Descartes consists of defining addition, subtraction, 
multiplication, and division, hence also power taking and root extraction, for line 
segments in such a way that their results are once more line segments, so that the 
set of line segments is closed under these operations. As we already saw in Liber 
Primus, this was not the case for the mathematics of the Greeks: the sum and 
difference of line segments were indeed line segments, but the product of two line 
segments was a rectangle and the product of three was a rectangular 
parallelepiped. The product of more than three line segments was problematic (for 
this, see Appendix, Section 1). 
 Descartes presents his ideas on the first page of the Géométrie. It is essential 
for this that he introduces a fixed line segment that will serve as the unit element 
1. The proportions 1 : a = b : p and 1 : b = q : a give the product  p = ab and the 
quotient q = a/b. Figure 1.5.1 gives the associated constructions.  
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Here we have AB = 1 and AC || DE, so that 1 : BD = BC : BE, and therefore                  
BE =BD.BC and BC = BE/BD.   
 For the extraction of roots Descartes uses a well-known property of the similar 
triangles formed by the altitude from the right angle in a right triangle, and gives 
Figure 1.5.2 as example, where triangle IFG is similar to HIG and consequently 

GHFGIG .2 = . 
 
 

An important consequence of the introduction of the unit line segment is that 
Descartes can drop the condition of homogeneity. After all, all products and 
quotients of line segments are also line segments. Viète still required that all 
quantities in an equation or equality be of the same type: all line segments, all 
areas, or all volumes. For Descartes, however, bba −22  is by definition a line 
segment, though he does add that, for example when extracting the cube root, this 

form can be written as a polynomial of degree three, that is, as .1
1

2
22

bba
−  It is 

remarkable that Descartes nevertheless still speaks of the product of three line 
segments as le parallelepipede composé de trois lignes [the parallelepiped made 
up of three lines], for example in the Géométrie p. 336. 

 
FIGURE  1.5.1 

 
FIGURE  1.5.2 
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 Right after this Descartes introduces the following notation, which is so 
familiar to us today: a, b, c ... for known line segments and ... x, y, z for unknown 
line segments. Moreover, he also introduces numerical exponents and the radical 
sign. We have already mentioned his variant of the equal sign. Van Schooten 
refers to these innovations as the manner of Monsieur Des Cartes. 
 As a first application, Descartes gives the constructive resolution of the 
quadratic equation .22 bazz +=  As usual he restricts himself to the positive root, 
dismissing the negative one as racine fausse (false root).  
 Figure 1.5.3 reflects the situation. Let the radius NL of the circle with center N 
be a/2, the length of the tangent LM be b, then we directly realize that 

,
42

2
2

baaMO ++=  from which Descartes concludes right away that this is the 

line segment z in question. From the same figure he deduces that MP is the 
solution of the equation .22 bayy +−=  For the solution of ,22 bazz −=  he uses 

an analogous method in another figure. The equation 22 bazz −−=  without 
positive root is, of course, not discussed. 

 
After these algebraic preparations, Descartes proceeds with his basic method for 
analytic geometry, which he demonstrates by means of Pappus’s Problem 
mentioned above. 
 This problem was presented to him in 1631 by Jacobus Golius (1596−1667), 
professor of mathematics and Arabic in Leiden. Within several weeks Descartes 
sent a letter to Golius with his solution, which he also incorporated into the first 
book of the Géométrie (pp. 309−314 and 324−335).  His treatment of this problem 
was the first application of the method that forms the basis of analytic geometry. 
Moreover, the result inspired him, among other things, in his views on what he 
called ‘admissible curves’. 
 Prior to his solution Descartes discussed the place of this problem in antiquity, 
including a number of pointed jabs at the Greek mathematicians in general, and 
Pappus in particular. 

 
FIGURE 1.5.3 
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He then announces his solution without much enthusiasm (Géométrie, p. 309):  
En sorte que ie pense auoir entierement satisfait a ceque Pappus nous dit auoir esté 
cherché en cecy par les anciens & ie tascheray d’en mettre la demonstration en peu 
de mots, car il m’ennuie desia d’en tant escrir. [So that I think that I have fully 
accomplished that which, according to Pappus, the ancients wanted and I will try to 
give the proof in few words, as it already annoys me to write so much about it.] 

To clarify we first give Descartes’s solution of Pappus’s problem for four lines. 
We stay close to the original proof, including the notations. The associated Figure 
1.5.4 is also borrowed from the Géométrie. 

 

 
Let AB, AD, EF, and GH be four given lines in the plane. To each line 
corresponds a fixed direction. These directions are represented in the figure by a 
dotted line from a point C: CB, CD, CF, and CH. We want to find the position of 
the point C for which the proportion CB.CD : CF.CH has a given value, which 
Descartes chooses to be 1. We are thus looking for the equation of a plane curve 
that is defined geometrically. Both Fermat and Jan de Witt proceed in a different 
manner: they begin with a given equation and examine which curve it describes. 
 The method of Descartes consists of choosing the line through A and B as 
abscissa-axis, with A as origin, and the direction conjugate to AB as direction of 
the ordinate-axis, in this case from B to C. Thus the point C has abscissa AB and 
ordinate BC. The first distance we want, CB, is therefore equal to y. 
 The angles at A are fixed, as are the angles at B, so that the angles of triangle 
ABR are known, and therefore also the ratios of the sides. Descartes sets 

 
FIGURE 1.5.4 
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,:: bzBRAB =  which gives bxBR
z

= , with known b and z. In our figure we 

therefore have  bxCR y
z

= + .  

The angles of triangle DCR are also known, hence again also the ratios of the 
sides. Descartes sets CR : CD = z : c  with the same z as before. With CR as 
above, this give the second distance CD: 
  

  ..
2z

bcx
z

cy
z
CRcCD +==   

Descartes proceeds in an analogous manner. First he sets the known distance AE 
in triangle SBE equal to k, so that EB = k + x. For the known ratio of the sides BE 
and BS he writes BE : BS = z : d, again with the same z, whence    

  . ( )d BE d k xBS
z z

+
= = , 

so that  

    .zy dk dxCS BC BS y BS
z

+ +
= + = + =  

Next Descartes sets the known ratio CS : CF equal to z : e, which gives the 
following result for CF, the third distance we were looking for:  

  .2z
dexdekezyCF ++

=  

He continues in the same manner: he sets AG = l (hence BG = l − x), 
fzBTBG :: = , TC : CH = z : g, and finally finds the fourth distance, CH: 

  .2z
fgxfglgzyCH −+

=  

The first conclusion Descartes draws is that, regardless of the number of given 
lines, the sought distances are linear forms in x and y. Of course he does not use 
this expression, but describes the look of such a form. For the cases where one or 
more lines are parallel to AB or to BC, he makes an exception to his definition of 
linear form, as either the term in x or the term in y is missing. 
 His second conclusion is that when multiplying a number of these distances, 
the degree of a term in x and y is never higher than the number of distances 
involved in the product. The locus in question is therefore represented by an 
equation in the two variables x and y. If one of these is given a certain value, then 
the other one must satisfy the resulting (determinate) equation. 
 He considers explicitly the case of five or less distances. The condition 

54321 dadddd = , where a is a given line segment, leads to an equation in x and y, 
in which y has power at most three, but x has power at most two because the first 
distance, ,1d is equal to y.  Repeatedly choosing random values for y gives 
quadratic equations in x whose roots can be constructed with ruler and compass 
following the method mentioned before. Descartes thus gives a point-by-point 
construction of the locus we are looking for. 
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 This method can also be applied to more than five lines if a number of them 
are parallel to AB or to AC, where, of course, AB and AC are assumed to be 
concurrent. In that case it is possible that so many terms x, respectively y, cancel 
out that the resulting equation in x, respectively y, is of degree one or two, and that 
the root x, respectively y, can be constructed with ruler and compass by giving y, 
respectively x, a certain value. 
 If all lines are parallel, then five lines already pose a problem. In that case the 
equation can be formulated so that y does not occur; the equation in x is then of 
degree three. It was assumed that its roots could not be constructed with only ruler 
and compass; P.L. Wantzel gave the first proof of this in 1837. However, in Book 
II of the Géométrie, Descartes gives a solution of this equation using conics.  
 For at most nine lines that are not all parallel, the method of Descartes gives an 
equation in which x has degree at most four because the first distance is equal to y. 
Further on, in Book II, Descartes shows that in this case a solution can be given 
by intersecting conics. Analogously, for at most thirteen lines we obtain an 
equation of degree at most six in x. Descartes later solves this using a ‘higher’ 
curve, namely the ‘Trident’ or ‘Parabola of Descartes’. We will come back to this 
curve in Section 3 of the appendix. 
 
At this point Descartes interrupts his treatment of Pappus’s problem to insert an 
overview of his classification of plane curves. He postpones his closer elaboration 
of Pappus’s problem, which culminates in his conclusion that in the case of three 
or four lines the solution is a conic, to pp. 324–335 of the Géométrie, after which 
he treats the problem for five lines on pp. 335–341. In Section 2 of the appendix 
we will discuss this elaboration on plane curves more closely, and in Section 3 we 
will give Descartes’ solution of Pappus’s problem for five lines. We will now first 
continue Descartes’ treatment of Pappus’s problem for four lines. 
 
Above we have already deduced values for CB, CD, CF, and CH (see also Figure 
1.5.4).  The condition CB.CF = CD.CH then gives 
 
 .)()( 222232 bcfgxbcgflxbcgzxcfgzxxdezdekzcfglzycgzezy −++−−−=−  
 
If 23 cgzez −  is negative, we multiply both sides by –1. Descartes only considers 
the values of y for which C lies inside the angle DAG. After introducing suitable 
new coefficients m and n, which depend on b, c, d, e, f, and l, Descartes reduces 
the equation to the form 

  .
2

2
23

2
2

cgzez
bcfglxbcfglx

z
nxy

myy
−

−
+−=  

The roots of this equation are 
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of which Descartes only considers the one with the plus sign. For simplification 
Descartes also introduces the quantities o and p, which are again dependent on the 
aforementioned coefficients, giving 

  
m

px
oxm

z
nxmy

2
2 −++−=  

for the root. Here m, n, z, o, and p are known quantities. 
 Descartes first remarks that the locus is a line if the expression under the 
radical sign is zero or a perfect square. Next he remarks straight off that in the 
other cases the locus is one of the three conics or a circle.  For the construction of 
the parabola as a solution Descartes refers to the corresponding problem in the 
first book of the Conica of Apollonius. In the remaining cases he gives, without 
further explanation, the characteristic quantities for the curve (center, latus 
rectum, symmetry axes, vertices,...) in terms of the coefficients of the equation 
above. For the actual construction of the curves from this he also refers to 
Apollonius, after which he shows that the curves constructed this way coincide 
with the curves that appear as solutions for Pappus’s problem.  
  Of course many cases can be distinguished with respect to the mutual position 
of the points that arise in the course of the construction, depending on the 
parameters of the equation. Descartes treats these in detail. 
 Finally, he gives a numerical example (see once more Figure 1.5.4). In this 
example the following values hold:  
  EA = 3; AG = 5; AB = BR; BS = BE/2; GB = BT; CD = 3CR/2;  
  CF = 2CS;  
  CH = 2CT/3; 60ABR∠ = o . 
The condition CB.CF = CD.CH then leads to the equation 

  .52 22 xxxyyy −+−=  

The locus turns out to be a circle, which Descartes shows meticulously by means 
of his previous considerations.  
 With this Descartes concludes his treatment of Pappus’s problem for four 
lines. In Section 3 of the appendix we will discuss the solution of the problem for 
five lines. 
 
6. As noted before, Fermat was inspired by the work of Apollonius. Around the 
end of 1635 he completed a reconstruction of two lost works of Apollonius, the 
Loci Plani, which, as the title says, deal with plane loci, that is, lines and circles. 
This led him to write his first and fundamental contribution to analytic geometry, 
entitled Ad Locos Planos et Solidos Isagoge (Introduction to Plane and Solid 
Loci), a study consisting of only eight pages, followed by a three-page appendix.  
 Right from the beginning his presentation is clearly different from that of 
Descartes. A first example of this is his notation, which he took from Viète, even 
though the printed version of 1679 includes numerical exponents as used by 
Descartes.  His setting up is also different. We have already seen that Descartes 
took Pappus’s Problem for four lines as a starting point and established an 
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equation for the sought locus, which he submitted to a precise examination with as 
final aim the construction, that is, the constructive solution, of equations.  
 Fermat went to work in the opposite manner; roughly speaking, he started with 
an equation in two variables and, using the properties of the conics from antiquity, 
he examined which curve it represented. This way he approached the problem of 
the loci in its most general form. Indeed, his reproach to the ancient 
mathematicians was that they had not tackled this problem in a general enough 
setting. 
 Fermat was the first to realize that an equation in two variables represents a 
curve. He states this insight in the following historical sentence:  

Quoties in ultima aequalitate duae quantitates ignotae reperiuntur, fit locus loco, & 
terminus alterius ex illis describit lineam rectam, aut curvam, linea recta unica & 
simplex est, curva infinita, circulus, parabole, hyperbole, ellipsis, &c. [Whenever 
the final equation has two unknown quantities, the locus has a fixed position and 
the extremity of one of the two unknowns describes a straight or curved line; the 
straight line corresponds to only one type and is simple; there are infinitely many 
types of curved lines: a circle, a parabola, an ellipse, etc... . ] 

 The most important novelty is that in contrast to his predecessors, Fermat does 
not limit himself to determinate equations, that is, one equation in one variable 
that must be resolved, or a system with as many equations as variables, but 
considers indeterminate equations in two variables. 
 He represents the two unknown quantities in the equations as line segments in 
a plane. He measures off the first of the two along a fixed half-line, starting at its 
origin. He then sets the second one in upward direction from the origin of the first 
variable under a fixed, often right, angle with the first half-line (see Figure 1.6.1). 

 

 
FIGURE  1.6.1 

 
Thus Fermat uses a coordinate system with one axis. The y-axis does not occur; it 
comes up for the first time in a posthumous publication from 1730 by C. Rabuel 
(1669−1728). From now on we will speak of the abscissa and ordinate instead of 
the first and second variable. 
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The curve in question is then generated by the extremity of the ordinate for 
varying abscissa. Fermat calls this extremity the terminus localis. Generally he 
only considers that part of the curve that lies in what we would call the first 
quadrant. We will see that Jan de Witt follows this method. 
 The Isagoge of Fermat has one central theorem:  

…modo neutra quantitatum ignotarum quadratum praetergrediatur, locus erit 
planus aut solidus, ut ex dicendis clarum fiet. [… on condition that none of the two 
variables occurs in a higher power than two, the locus will be plane or solid, as 
will become clear from what follows. ] 

Here again solid locus stands for parabola, hyperbola or ellipse.   
 This theorem is proved by means of seven typical examples, where Fermat 
initially assumes the equations to be reduced (ultima aequatio); he had learned 
this reduction from the work of Viète. 
 In fact, with his examples Fermat studies all standard linear and quadratic 
equations. In this he is much more systematic than Descartes.  He moreover also 
gives examples of translations of the axis and an example of what we would call a 
rotation of the x-axis. His writing contains the core of analytic geometry, though 
in a text that is incomplete and often impenetrable.  Compared to this, the work of 
Jan de Witt, which builds on this and on the Géométrie, is an oasis of system, 
lucidity, and thoroughness. 
 
In the following overview our current notation replaces the notation of Fermat. 
Where Fermat writes A and E for the variables, we write x and y, while we 
represent constants by small letters. An example: we write  

  222 22 EAEAB +=− , as 

  222 22 yxyxb +=− .  

We will also use parentheses. There were unknown to Fermat; they are of course 
missing from his verbal description, as a result of which the text must be read very 
carefully. 
 
The equations treated by Fermat are the following: 
i.  dx = by   as an example of a straight line 
ii.   2cxy =   as an example of a hyperbola 
 
To this he adds an example of a translation of an axis: 

  .2 syrxxyd +=+  

Using words, he describes this equation in a form that we would write as 

  ,))(( 2 rsdyrsx −=−−  

where he remarks that we now have the same form as above if we view  x–s  and 
r–y as  ‘successors’ of x and y. He does not speak explicitly of a new abscissa-
axis.  



16 1. Introduction 

 

iii.  2222 :; yxyx = constant; and =+ 222 :)( yyx constant 
as examples of pairs of lines 
iv.   dyx =2  and dxy =2  as examples of a parabola 
Next he reduces  
  dyxb =− 22  to the form ),(2 yrdx −= where ,2bdr = and 
remarks that this is the previous case if we view r–y as the successor of y.  
v.  222 yxb =−  as an example of a circle, at least if ‘the angle’ is a 
right angle   
He then reduces ryyxdxb 22 222 +=−−  to 222 yxp =− , where x and y have 

replaced x + d and y + r and where .2222 rdbp ++=  

vi.  =− 222 :)( yxb  constant as an example of an ellipse 
He adds to this that if the constant has value 1 and ‘the angle’ is a right angle, then 
this is a circle, but if the angle is not right, it is indeed a true ellipse.  
vii  =− 222 :)( yyx  constant as an example of a hyperbola 
The method Fermat uses for his proofs is essentially the same as that of Jan de 
Witt. Using the coefficients that occur in the equation, he describes, with words, 
the line or curve in question and shows that the abscissa and ordinate of an 
arbitrary point on it satisfy the given equation. The converse, the compositio or 
synthesis, is often missing or is disposed of as obvious: est facilis compositio.  
This corresponds to the proof that any point whose abscissa and ordinate satisfy 
the equation lies on the curve.  
 In his proof Fermat of course needs a characteristic property of the curve that 
is being discussed. For this he calls on one of the properties that Apollonius gave 
for the different conics, which Fermat assumes known by his readers. Thus for the 
ellipse he uses a property that we will need later on, which the reader can find in 
Note [3.5] of the translation.  The corresponding figure is included here as Figure 
1.6.2. In this CAG is the major axis of an ellipse with center A, and ED lies in the 
conjugate direction. The characteristic property states that the point D lies on the 
ellipse if and only if the ratio DE2 : CE.EG is constant. 
 As a simple example of the method used by Fermat we choose the equation 

.2 dyx =  In this case Fermat chooses an abscissa-axis with origin N and an 
ordinate-axis in the conjugate direction, here ZI (see Figure 1.6.3). Next he 
describes, with words, a parabola with vertex N whose symmetry axis lies in the 
direction of the ordinate-axis, with conjugate axis in the direction of the abscissa-
axis and latus rectum d. If PI is drawn parallel to NZ, then if the parabola goes 
through I, based on the characteristic for a parabola given by Apollonius, we have 

..2 PNdPI =  
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FIGURE 1.6.2 

Here PI = NZ = x and NP = ZI = y, so that a point on the curve satisfies dyx =2 , 
which is precisely the equation of the curve that we started out with. 

 

 
FIGURE 1.6.3 

Right away Fermat remarks that, conversely, a point I satisfying dyx =2  lies on 
the parabola. Once more the compositio is missing. In the example of the circle he 
is clearer on the nature of the point I ; there he states explicitly that I lies on the 
circle in question and shows that the coordinates x and y satisfy .222 yxb =−  
 
In addition to the examples of translations of axes mentioned above, Fermat also 
gives an example of a rotation of an axis, though without using this term. He 
announces this problem with the words:  

Difficillima omnium aequalitatum est quando ita miscentur 2A  & 2E ut 
nihilominus homogenea ab A in E afficiantur una cum datis &. 

 [The most difficult of all equations is that where 2x and 2y  occur in such a way 
that there are also terms with xy and constants...] 

 
His example is the equation  

222 22 EAEAB +=−  
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for us                   ,22 222 yxyxb +=−  that is, 222 )( yxxb +=− .   
 
We will follow Fermat's solution closely, though in general using our own 
notation. 
 Fermat first chooses an abscissa-axis with origin N and with ordinate direction 
perpendicular to it (see Figure 1.6.4). V is an arbitrary point whose abscissa NZ (= 
x) and ordinate ZV (= y) satisfy the equation mentioned above.  We are interested 
in the locus of V for variable Z.  
 To find this Fermat describes a circle with center N and radius b that meets the 
perpendicular through Z at I and the abscissa-axis at M. 

 

 
FIGURE  1.6.4 

 
From the figure it becomes clear that  
   2222 )( VIZVZINZNM +==−  (i) 
and from the given equation follows 
   ,)( 222 NZZVNZNM +=−    
so that  VI = NZ  (= x). 
Then Fermat draws the line segment MR parallel to IZ and equal to NM. Let O be 
the intersection point of NR and the extension of IZ. Clearly NZ=ZO ; as we have 
already seen that NZ = VI, this gives OV = ZI. From (i) then follows 
   .222 OVNZNM =−   (ii) 
Fermat now remarks that the ratios 22 : NRNM and 22 : NONZ  are ‘given’, 
without mentioning that they are equal, which is essential here. He does not use 
that their common value is equal to 1:2.  
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From 2222 :: NONZNRNM =  = constant,  
follows )(:)( 2222 NONRNZNM −−  = constant. 

Together with (ii) this gives )(: 222 NONROV −  = constant.                (iii) 
From this and from the fact that the line NR and the angle NOZ are fixed he 
immediately concludes that the variable point V lies on an ellipse. Apparently he 
calls upon the characteristic of an ellipse mentioned above. 
 To check the correctness of his statement, we choose NOR as new abscissa-
axis and the direction of OZ as the associated ordinate direction. The new abscissa 
NO and the new ordinate OV of V satisfy  
  ORNONROV ⋅+ )(:2  = constant. 
Based on the characteristic property mentioned above, V lies on an ellipse with 
center N, symmetry axis NR, and associated conjugate axis parallel to OV, and 
hence to RM. 
 All this can be verified through a simple calculation. If we set NO = u and 

vOV = , then 2:1)2(: 222 =− ubv  follows from (iii) if we consider that 

2:1: 22 =NRNM . 
 

This means that  ,1
2 2

2

2

2
=+

b
v

b
u which is exactly the equation of an ellipse with 

center N and axes of length 2 2b  and 2b.  
 As  u = 2x  and v = x + y, we have, as should be, .)( 222 yxxb +=−  
 
Fermat notes that all cases with a mixed term xy can be treated with similar 
methods.  
 As crowning glory (coronidis loco) of this work Fermat adds the following 
propositio. Consider arbitrarily many given lines in the plane and a point with line 
segments drawn towards these lines under given angles, then the points for which 
the sum of the squares of these line segments equals a given area lie on a conic.   
 One can see this problem as a variant of Pappus’s Problem, with sums instead 
of products. Fermat does not solve this problem but a simplified version of it: 
given two points M and N, determine the locus of the points I such that 

22 INIM +  has a given ratio to the area of triangle IMN. This locus proves to be 
a circle, of which he gives an equation, followed by a construction independent of 
this.  
 Not without conceit Fermat concludes his Isagoge with the following remark:  

If this discovery had preceded the two books on plane loci that I recently 
reconstructed, then the proofs of the theorems concerning loci would certainly have 
been more elegant. 

7. Fermat added a three-page appendix to his Isagoge, entitled APPENDIX AD 
ISAGOGEM TOPICAM continens solutionem problematum solidorum per locos.  
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[Appendix to the introduction to the loci, containing the solution of spatial 
problems by means of loci.] 
In this appendix Fermat applies his theory to solving algebraic equations in one 
variable, the so-called determinate equations. His technique consists of 
introducing a cleverly chosen second variable in order to transform the problem 
into determining the intersection point of two plane curves. He limits himself to 
equations of degree three or four and shows that conics suffice for solving these.  
 His first example is the equation 
  bcbxx 223 =+ . 
He introduces a new variable y by setting 

  ,223 bxybcbxx ==+  

which leads to the system  

  bybxx =+2    (i) 

  .2 xyc =   (ii) 

Using this, the variable x can be found as the abscissa of an intersection point of 
the parabola with equation (i) and the hyperbola with equation (ii). As Fermat 
only considers one ‘quadrant’, he finds only one intersection point. He is not 
interested in more anyway. Any further examination of this root, such as checking 
whether this root indeed satisfies the equation and whether there are more roots, 
such as x=0, is missing. He again dismissed these matters with the words est 
facilis ab analysi ad synthesim regressus. 
 Fermat notes that all cubic equations can be solved using a similar method.  
 The second example is of degree four: 44234 dxcxbx =++ ,   
which he rewrites as 
  .22344 xcxbdx −−=   
By setting both sides equal to c2y2 one easily sees that the solution is found by 
intersecting the parabola with equation x2 = cy and the circle with equation 

.223422 xcxbdyc −−=  Both here and elsewhere in the appendix Fermat 

mentions explicitly that one already knew how to eliminate the term 3x in a degree 
four equation from the work of Viète, so that his example has a general validity. 
 After this Fermat brings up an old problem: determining x, the greatest of the 
two geometric means of b and a, where b > a. He of course assumes known that 
this satisfies the equation .23 dbx =  To solve this he sets bxyx =3  and 

.2 bxydb =  The x in question is therefore determined by an intersection point of 

the parabola with equation byx =2  and the hyperbola with equation xy = bd. 
Fermat gives a geometric explanation for this.  He also gives a solution with two 
parabolas. For this he replaces dbx 23 =  by ,24 dxbx = after which he sets 

224 ybx = and ,222 ybdxb =  so that the solution follows from ‘the’ intersection 
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point of the parabolas with equations byx =2  and dxy =2 . He mentions that this 
method can also be found in the commentary of Eutocius (ca. 480 AD) to 
Archimedes. 
 With a reproach to Viète, Fermat gives an application of his ‘elegant method’ 
to solving the general degree four equation, namely by using the intersection of a 
parabola and a circle. He objects to Viète’s use of a cubic equation, the resultant, 
when solving an equation of degree four.  Fermat gives two characteristic 
examples: 
  434 dxcx +=  and .3224 dcxcx −=  
Here too he notes that since Viète one knows how to get rid of a possible cubic 
term, so that these two types of equations suffice. 
 In the first case he completes the square on the left-hand side to the form 

222 )( bx − , where b must still be determined, so that the equation becomes 

  .2)( 22443222 xbbdxcbx −++=−  

He then sets both sides equal to 22 yn with ,2 22 bn = and chooses 

  .22 nybx =−    (i) 
We moreover have 
   ,2 2222443 ynxbbdxc =−++    (ii)  
so that the variable x is determined by an intersection point of a parabola and a 
circle with equations respectively (i) and (ii). 
 The second case is more complicated. As before he completes both members 
to  
  ,2)( 322224222 dcxcxbbbx −+−=−   
and sets both equal to n2y2. Here b and n must still be determined. Again he 
chooses 
  .22 nybx =−  

We also have   ,2 22322224 yndcxcxbb =−+−  

that is,  .)2( 2234222 yndcbxbc =−+−   
It is now clear that in order to obtain a circle, we must choose b in such a way that 

222 cb >  and n in such a way that .2 222 cbn −=  
The choice 222 cb <  would lead to a hyperbola instead of the desired circle, 
which is simpler for a constructive solution. Fermat disregards the choice 

222 cb = .  
 Finally, Fermat shows that the problem of the two geometric means can also 
be solved in this manner. Here is a sketch of his method. First he again replaces 

dbx 23 =  by dxbx 24 =  and, as above, switches over to   
  ,2)( 222224222 ynxbdxbbbx =−+=−   
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where n2 = 2b2 , so that x is the abscissa of the intersection point of the parabola 
with equation  

  nybx =− 22  

and the circle with equation 

  222224 ynxndxbb =−+ , that is,  

   .22 222 yxdxb =−+  

 His conclusion is: whoever sees this will try in vain to solve the problem of the 
mesolabium, the trisection of the angle and similar problems with the help of 
plane curves, that is, using lines and circles. A mesolabium is an instrument for 
constructing the geometric means of two line segments, invented by Eratosthenes 
(ca. 276 − ca. 195 BC). See [65]. 
 
8. The destiny of Fermat's Isagoge differed in many respects from that of the 
Géométrie of Descartes.  
 Fermat lived isolated as Royal Counselor and Commissioner of appeals of the 
parliament of Toulouse and later rose through the ranks, but never ventured far 
from the city. He never even visited Paris. In addition to his administrative 
functions he practiced mathematics intensively, though he continued to consider 
himself an outsider. His contacts with the mathematical world were mainly 
through letters, among which a prominent place was taken in by the 
correspondence with members of a Parisian group of mathematicians led by 
Etienne Pascal, the father of Blaise. Père Marin Mersenne managed the extensive 
correspondence of this group and determined who was the right person for the 
various subjects. 
 Through this group, Fermat made his Isagoge (with Appendix) known to the 
world, and it is also thus that Descartes and Frans van Schooten Jr. obtained 
copies of it. Fermat, however, did not authorize the publication of his Isagoge, 
something which applied to virtually all of his work.  Let us note that already 
prior to 1650, the brothers Elsevier had plans to publish the work of Fermat, but 
these were never realized. Only in 1679, fourteen years after his death, did his son 
Clément-Samuel provide a first printed version of his mathematical works under 
the title Varia Opera Mathematica D. Petri de Fermat, Senatoris Tolosani. 
However, at that point his work had already been surpassed by the Géométrie of 
Descartes and the work of his followers. 
 
9. This Géométrie, which appeared directly in print in 1637 through Jan Maire, a 
bookseller in Leiden, was initially not appreciated by everyone. The reason for 
this was not only the inaccessible style of this work and the French language in 
which it was written, but also the fact that many continued to prefer the synthetic 
method of the Greeks. It was therefore important that there be mathematicians 
who ensured the diffusion of the ideas laid down in the Géométrie. 
 Among them Frans van Schooten Jr. deserves a special mention. He made the 
Géométrie accessible to all scholars through his translation of it into Latin, the 
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Lingua Franca of the scientific world, and through his lucid explanations and clear 
drawings. For the history of this work the reader is referred to the introduction to 
the translation of Liber Primus. 
 
In France, G.P. de Roberval (1602−1675) spent much time on introducing the 
method of Descartes. Although an important work of his concerning the 
formulation of equations of loci and the resolution of equations using the 
intersection of plane curves only appeared after his death, he presumably 
introduced his students to the analytic geometry of Descartes during his lectures at 
the Collège de France. 
 In 1639, the Notae Breves, a commentary on the Géométrie written by 
Florimond Debeaune (1601−1652), came out. In this, the Géométrie is followed 
painstakingly, commented on exhaustively, and completed in a systematic 
manner, in particular where the classification of quadratic equations in two 
variables is concerned. Van Schooten Jr. included these Notae Breves in all 
editions of his Geometria à Renato Descartes, etc.  From the second edition on, 
this work also included a posthumous treatise of Debeaune on algebraic equations. 
 Philippe de la Hire (1640−1718) was one of the French who later gave 
overviews and explanations of the Géométrie. After two dissertations in synthetic 
style concerning conics, he published, in 1679, a work in three parts of which the 
first part gives a planimetric treatment of conics as plane curves defined by their 
focal properties. The second part, Les Lieux Géométriques, is written in the style 
of Liber Secundus of Jan de Witt, but it also contains an introduction to analytic 
geometry in three or more dimensions. De la Hire was the first to give a simple 
example of a surface as locus, represented by a quadratic equation in three 
variables. Fermat and Descartes had only alluded to this possibility. The first 
systematic treatment of analytic geometry in dimension three was by Antoine 
Parent (1666−1716), who submitted a paper on this to the Académie des Sciences 
in 1700. The third part of the work of de la Hire treats the constructive resolution 
of algebraic equations by intersecting plane curves. 
 
It was John Wallis (1616−1703) who propagated the ideas of Descartes in Great 
Britain, though not through a translation of or commentary on the Géométrie, but 
through an original work, the Tractatus de sectionibus conicis, published in 1655.1 
In our introduction to Liber Primus we have already mentioned that he defined 
conics by their equations. Of course these equations did not appear out of 
nowhere: they were inspired by the symptomata of Apollonius. In another respect 
Wallis also advanced the algebraification: for him coordinates were no longer line 
segments, but numbers. He also introduced negative abscissa and ordinates. 
Furthermore, in his Arithmetica Infinitorum, also from 1655, he linked analytic 
geometry and infinitesimal methods.  

                                                            
1
 Editors note. One of the referees has pointed out that it can be argued that Wallis’s work 

was almost entirely independent of Descartes’s work. We refer to the English translation 
of Arithmetica Infinitorum, The arithmetic of infinitesimals by Jacqueline A Stedall, 
Sources & Studies in the History of Mathematics & the Physical Sciences, 2004.  
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 Nevertheless, the ideas of Wallis did not catch on with all English 
mathematicians. Some felt more at home with the synthetic methods from 
antiquity; for example Newton's teacher, Isaac Barrow (1630−1677), was strongly 
opposed to this new method. This in contrast to Newton, who valued the 
Géométrie greatly. In continental Europe Wallis also made enemies, partly due to 
his claiming certain priorities. According to him, the Géométrie was based on the 
Artis analyticae praxis from 1631 by Thomas Harriot (1560−1621) and the Lieux 
Géométriques of de la Hire was a plagiarism of De sectionibus conicis of Wallis. 
 Of course the work of Jan de Witt has frequently been compared to De 
sectionibus conicis; we already mentioned this in the introduction to the 
translation of Liber Primus. Based on what we have said earlier, De Witt cannot 
have been influenced by Wallis; after all, the latter defined conics by their 
equations while De Witt based himself on a kinematic manner of generation and 
used this to show which equation corresponded to which curve. Moreover, for 
Wallis coordinates are numbers while for de Witt they are still line segments. One 
might say that de Witt is more conservative in his approach than Wallis. Finally, 
the first draft of De Witt’s work was ready in 1649, six years before the 
publication of Wallis's De sectionibus conicis.  
 Let us also name Wallis’s Treatise of Algebra, both Historical and Practical, 
published in 1685.  In it he considered the constructive resolution of equations. It 
also includes the famous ‘Wallis conocuneus’ (conical wedge, a figure with a 
circular base like a cone, but having a ridge or edge instead of the apex).   
 Finally, let us mention Jacques Ozonam (1640−1717), who in 1687 wrote a 
treatise, ordered following the gradually accepted lay-out: first the geometry of 
conics, then loci and finally constructions of roots of algebraic equations.  
 By that time, however, the interest in analytic geometry was reduced, at least 
temporarily, by the rise of differential and integral calculus: Leibniz with his Nova 
Methodus of 1684 [44], a journal article of only six pages, and Newton, whose 
fundamental contribution to this new subject had been circulating amongst 
colleagues in manuscript form since 1665 before coming out in print in 1704. 
 
10. To conclude we will briefly present the structure of Liber Secundus and sketch 
Jan de Witt’s method. The reader will find a detailed overview of the contents in 
the summary. 
 The core of the book comes down to the following. First Jan de Witt gives 
equations in x and y for the straight line and the conics, in standard form with 
respect to a coordinate system chosen by him, which we will come back to later. 
These correspond to the following well-known forms:  
i.   bayxbaxy +=+= ,   (line), 

ii.   bayxbaxy +=+= 22 ,    (parabola), 

iii.   cxyxbyaybxa ==−=− ,1,1 22222222 = 1 (hyperbola), 

iv.   2222 ybxa + =1  (ellipse). 
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The restriction to positive coefficients and the homogeneity condition force him to 
distinguish more cases and to give other forms, which formally differ from these. 
These can be found in the summary. 
 He then shows that these standard forms indeed represent the curves in 
question. That is to say, the coordinates of every point on such a curve satisfy the 
corresponding equation. The converse, that every point of which the coordinates 
satisfy the equation indeed lies on the corresponding curve, is seldom shown. 
  After a short treatment of the straight line (which is hardly considered by 
others), all attention is on the conics. Three statements, which Jan de Witt 
announces as Regula Universalis (Universal Rule), are central. 
 The first concerns the parabola, and states that every quadratic equation in two 
variables x and y of which only one occurs as a square can be reduced to one of 
the forms in ii, that is, to one of the variants he gives. He also tells how this can be 
done: by splitting off a perfect square. He does not prove this in its full generality, 
but illustrates the method by means of thirteen well-chosen examples, which all 
correspond to rotations and to parallel translations of the abscissa-axis.  
 For the second Regula Universalis Jan de Witt assumes that the equation that 
is being studied can also have terms with xxyyx ,,, 22 , and y, and that it does not 
represent a parabola. Such an equation, he says, can be reduced to one of the 
forms in iii and iv. Again he shows how to do this. It is now a matter not only of 
splitting off a perfect square, but also of a technique that corresponds to 
‘removing the brackets’, though he does not use brackets. For example, for the 
expression xy + ay, he introduces the new variable v = x + a and substitutes 

avx −=  in the expression, which transforms it into vy. He demonstrates this 
method with four fairly general examples. 
 In the third Regula Universalis Jan de Witt considers the general quadratic 
equation in two variables in order to show that this can always be reduced to one 
of the forms stated above. For this he first repeats the standard forms in x and y 
stated before, which represent a straight line or a conic. Then he introduces new 
forms for conics by successively replacing the variables y and x in the forms given 
in ii − iv by z and/or v, where  
  z = y + px + q and v = x + h 
or  z = y + h and v = x + py + q. 
In an obvious way this gives rise to the new forms. For example the form 
  12222 =+ ybxa   
gives rise to  
  2222 zbxa + = 1, 12222 =+ ybva , and ,12222 =+ zbva  
where z and v are as above. 
 The form xy = c gives rise to xz = c, vy = c and vz = c, but in this case Jan de 
Witt restricts himself to z = y + h and v = x + k.   
 The third Regula Universalis states that the general quadratic equation in two 
variables can be reduced to one of the forms in ii−iv or to one of the forms 
deduced from these as above. The summary contains an overview of these. 
Strictly speaking, Jan de Witt does not prove that this rule holds. He goes to work 
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conversely, as follows. He considers each of the new forms in z and/or v and 
shows in detail that for all possibilities for z and v it represents a conic, which he 
describes in detail with words. He does not write down the curves themselves, 
rather their vertices, centers and axes. However, he does not mention how to 
reduce a general quadratic equation to such a form, saying only Methodo jam 
explicata, which means ‘in the manner that has already been explained’. 
Apparently he means the many explicit examples, in which different manners of 
reduction have been shown. For example on p. [283] he clearly shows the 
technique that is meant here. Consequently, the third Regula Universalis is not 
followed by any examples. 
 Like Fermat, Jan de Witt starts out with a given linear or quadratic equation in 
two variables and proves that it represents one of the curves in question, as 
discussed above. Like Fermat, he uses a coordinate system with a one axis. The 
method is described in Section 6 of this introduction (see also Figure 1.6.1). Jan de 
Witt sets out the coordinates in the same direction as Fermat, as a result of which 
he too restricts himself to the ‘first quadrant’. For this De Witt uses a fixed phrase, 
which he repeats time after time:  

Let A be the immutable initial point and let us suppose that x extends indefinitely 
along the straight line AB, and let the given or chosen angle be equal to angle ABC. 

The word ‘indefinite’ requires an explanation. It is the same word as that used in 
the Latin text, indefinite.  That word can also be read as ‘infinite’ or 
‘indeterminate’. ‘Infinite’ could be confusing. The quantity x, like y, remains 
finite, as both represent line segments. Its length can take on arbitrary values, 
without restriction, but remains finite. Sometimes in the translation, the word 
‘indefinite’ is replace by ‘indeterminate’ or ‘arbitrary’. 
 In the proof that a given equation represents a certain curve (as mentioned 
above), De Witt proceeds in a standard manner. Using the coefficients that occur 
in the equation, he describes the curve that he has in mind using words. The 
quantities that determine this curve, such as latus rectum, vertex, symmetry axis 
and such, seem to appear out of nowhere, but were anticipated by him in a clever 
way. He calls this part of the proof the determinatio or the descriptio. After this he 
takes an arbitrary point on the curve with abscissa x and ordinate y. Using the 
geometric characteristics that he formulated in Liber Primus for the straight line 
and each of the conics, he then shows that the coordinates of the point chosen by 
him indeed satisfy the given equation. From p. [260] on, he explicitly calls this 
part of the proof the demonstratio. 
 In general De Witt does not include the converse, the compositio or synthesis. 
This corresponds to the proof that every point whose coordinates satisfy the 
equation indeed lies on the curve that is being considered. As a result of this he 
misses the second branch of the hyperbola. Remarkably he pays no attention to 
degenerations. 
 
Like Liber Primus, Liber Secundus is a tightly ordered text.  The central elements 
are the Regulae Universalis mentioned above, supported by fourteen Theoremata, 
many Exempla and three Problemata.  
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A Theorema consists of a propositio possibly followed by a number of corollaria. 
In the propositio a theorem is stated and proved; the corollaria give consequences 
of the propositio.  
 A Problema also consists of a propositio and possible corollaria. In this case 
the propositio states and resolves a constructive problem; the corollaria give 
further properties of the constructed figure.  
 The propositiones are numbered consecutively throughout the whole work, 
whether they belong to a Theorema or to a Problema. 
    
As in Liber Primus, Jan de Witt has added four types of marginal notes to the text. 
In three of the four cases he refers to these by means of superscript numbers in the 
text. In the translation these marginal notes are incorporated as footnotes. This 
concerns: 
i.  References to the Elements of Euclid. These have the same standard form as in 

Liber Primus. For example, ‘per 16 secti’ refers to Theorem 16 of the sixth 
book of the Elements. In the footnote in the translation this is denoted by ‘VI, 
16’.  

ii.  References to Elementa Curvarum Linearum itself. For example, ‘per 1 primi 
hujus’ refers to Proposition 1 of Liber Primus. To make it easier to find these 
we have added the number of the corresponding page of the Latin text. The 
footnote then reads ‘prop. 1, Lib.I, p. [162]’. Likewise ‘per 3 Corol. 6 primi 
hujus’ becomes ‘Corollary 3 of Prop.6, Lib.I, p. [191]’.  

iii. Technical clarifications of proofs in the text. Again an example (p. [302]): as a 
footnote the marginal comment ‘quippe quadr. ex HO aequatur GAF rectang. 
ex hypoth.’ becomes ‘because, by hypothesis, the square on HO is equal to the 
rectangle GAF’.  

There are also marginal notes that are not referred to by a number. In general this 
concerns the name of a special case, such as on p. [318]: ‘Casus 1mus, cùm Locus 
est Hyperbola’. In the translation such a marginal note has in general been 
incorporated into the text as a heading, here: ‘First case where the locus is a 
hyperbola’. 
 In one case (p. [305]) the comment concerns the definition of a symbol used by 
Jan de Witt; it can be found in Note [4.2]. 
 



 



 

2  

Summary 

In this summary the theorems and their corollaries (corollaria) are restated in our 
modern notation, without proofs.   
 The essence of the statements, however, has been preserved. For the proofs we 
refer to the text, the translation, and the notes. This summary aims only at giving a 
global survey of the contents of the book.   
 For an overview of the structure of Liber Secundus and the method followed 
by Jan de Witt, we refer the reader to Section 10 of the introduction.     

Chapter I 

In this chapter Jan de Witt examines linear equations in x and y. Here x and y are 
clearly interpreted as line segments, as is evident, among other things, from the 
wording ‘the initial point of one of the quantities’. The coefficients that occur are 
consequently always positive. 
 As in Liber Primus, the curves that are represented by the equations are called 
‘loci’.  
 The constructions in this work involve an x-axis, but no y-axis occurs. This x-
axis is introduced as follows: Jan de Witt takes a fixed point A on an arbitrary line 
and chooses this point as the fixed and immutable initial point of the variable x, 
which can extend indefinitely along this fixed line through A (always to the right). 
A given x is then represented by a line segment on this line, for example AE. From 
the endpoint of this x a line segment y is drawn ‘upward’ under a fixed given or 
chosen angle (see ED in Figure 2.1). We would say that he restricts himself to the 
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first quadrant. As was noted in the introduction, the y-axis was only introduced 
towards the end of the 17th century, by Claude Rabuel (1669-1728).  
 
Chapter I consists of the following theorems: 
 
Theorem I. Proposition 1.  

If the equation is
a

bx
y = , then the required locus will be a straight line.  

 
Theorem II. Proposition 2.  

If the equation is c
a
bxy += , then the required locus will be a straight line.  

 
Theorem III. Proposition 3.  

If the equation is c
a

bx
y −= , then the required locus will be a straight line.  

 
Theorem IV. Proposition 4.  

If the equation is
a

bx
cy −= , then the required locus will be a straight line.  

. 
Theorem V. Proposition 5.  
If the equation is y = c, then the required locus will be a straight line.  
 
 
Theorem VI. Proposition 6.  
If the equation is x = c, then the required locus will be a straight line.  

Chapter II 

In this chapter the following equations are considered:  
 
I.  y2 = ax or conversely ay = x2;  
II.  y2 = ax + b2  or conversely ay + b2 = x2; 
III.  y2 = ax– b2 or conversely ay – b2 = x2; 
IV.  y2 = – ax + b2 or conversely b2 – ay = x2. 
 
First the following theorems are proven: 
 
Theorem VII. Proposition 7.  
If the equation is y2 = ax or conversely ay = x2, then the required locus will be a 
parabola.    
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This is a direct consequence of Theorem I of Liber Primus (p. [162]), where 
this property is deduced as a characteristic (symptoma) of the parabola.  
 
Theorem VIII. Proposition 8.  
If the equation is y2 = ax + b2 or conversely ay + b2 = x2, then the required locus 
will be a parabola.  
 
Theorem IX. Proposition 9.  
If the equation is y2 = ax– b2 or conversely ay – b2 = x2, then the required locus 
will be a parabola.  
 
Theorem X. Proposition 10.  
If the equation is y2 = – ax + b2 or conversely b2 – ay = x2, then the required locus 
will be a parabola.  
 
The ‘converse’ forms (conversim) in Theorems VII to X are deduced by 
interchanging the roles of x and y in the figures and argumentations.  Here too 
only the parts of the curves that lie to the right of A and above the x-axis are 
considered.  

General Rule and method of reducing all equations that result from a 
suitable operation (when the required locus is a parabola) to one of the 
four cases that have been explained in the four preceding theorems   

This general Rule gives a method of reducing the equation in question, when it 
represents a parabola, to one of the forms of Theorem VII, VIII, IX, or X. Jan de 
Witt does not mention how one first determines that the equation represents a 
parabola.  
  This method amounts to splitting off a square: if in addition to the term with 
x2, the terms ± 2ax, ± 2xy, ± 2axy also occur, then we introduce a new variable z 
with respectively  
  ,axz ±=  yxz ±=  or  ayxz ±= . 
Of course the sign used for z is precisely the sign of the corresponding term if it 
occurs on the same side of the equal sign as x2. The same holds, mutatis mutandis, 
if y2 is concerned.  

The examples with which Jan de Witt illustrates his method are obviously 
chosen so that they represent parabolas.    

Examples of the reduction of equations to the form of Theorem VII 

1. Reduction of the equation   
 y2 + 2ay = bx – a2 

to the form  z2 = bx,  
where  z = y + a. 
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This reduction is followed by the construction of the corresponding parabola 
(determinatio, also descriptio) and the proof that the coordinates of the points on it 
indeed satisfy the equation (demonstratio). Henceforth, in the interest of 
conciseness, we will refer to this procedure as determinatio and demonstratio.  
 
2. Reduction of the equation 
 y2 – 2ay = bx – a2 

to the form  z2 = bx,  
where z  =  y –  a.  
For the rest of the proof we refer to the previous example. 
 
3. Reduction of the equation  
 by – a2 =  x2 + 2ax 
to the form  by = v2,  
where v = x + a.  
Description of the construction of this parabola in the plane, followed by the 
demonstratio.  
 
4. Statement that the equation   
 by – a2 =  x2 – 2ax 
can be treated analogously. 
 
5. Reduction of the equation  

 y2 + 
a

bxy2
 + 2cy = bx – 2

22

a
xb  – c2  

to the form  z2 = dx,  

where  z = y + 
a

bx
 + c  and  d = 

a

bc2
 + b.  

 

 
 

FIGURE 2.1 
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For the construction of this parabola (Figure 2.1), the point G(0, – c) is chosen as 
vertex. The axis GC goes through G and lies so that GB : BC = a : b, where BC 
lies in the direction of the ordinate axis.  
 Here too a demonstratio follows, in which Jan de Witt remarks that if the curve 
did not meet the x-axis, the solution would also be a parabola, but would not be 
constructible in a ‘satisfying manner’ (quod nulla tamen quaestioni satisfaciens 
describi possit). By this he means that it would not lie above the x-axis. See the 
corresponding notes to the translation.  
Note that this example was chosen very carefully.  
 
6. The position of the curve defined by the equation 

−=−− bxcy
a
bxyy 222  2

2

22
c

a
xb

−   

is compared with that of the parabola considered in 5. 
 
7. Reduction of the equation  
 

cx
a
bxyxc

a
ybby 2222
2

22
++=−−   

to the form  dy = v2,  

where  v = x + 
a

by
  + c and d = 

a
bc2  + b. 

Note that this situation is the ‘converse’ of that in 5. Again a complete 
determinatio and demonstratio follow.  

Examples of the reduction of equations to the form of Theorem VIII 

1. Reduction of the equation  

2
2

22
2

4
dbx

a
xb

a
bxyy ++−=−   

to the form  z2 = bx + d2,  

where  
a

bxyz
2

−= .  

Description (descriptio) of the construction of this parabola in the plane, including 
the proof (demonstratio) that the curve described this way is the parabola 
determined by the equation. Attention is also drawn to the ‘converse’ parabola, 
whose equation is obtained by interchanging the variables x and y.  
 
2. Reduction of the equation  

 
a

bcy
 + by – 

2

22

a

yb  + 
4

2c  = x2 + 
a

byx2
 – cx   
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to the form  by +
2

2c  = v2,  

where v = x + 
a
by  – 

2

c
.  

Description of the construction of this parabola in the plane, including the proof 
that the curve described this way is the parabola determined by the equation.  
 

Example of the reduction of equations to the form of Theorem IX 

Reduction of the equation  

 y2 + 
a

bxy
 – cy = ax 

2

22

4a
xb

−  – c2  

to the form  z2 = dx – 3
4

2c , 

where  z = y + 
a

bx

2
 –

2

c
 and d = a – 

a

bc

2
.  

Description of the construction of this parabola in the plane, including the proof 
that the curve described this way is the parabola determined by the equation.  

Examples of the reduction of equations to the form of Theorem X 

1. Reduction of the equation  
 ay –y2 = bx  

to the form  z2 = 
4

2a  –bx,  

where  
2
ayz −= . 

Description of the construction of this parabola in the plane, including the proof 
that the curve described this way is the parabola determined by the equation.  
 
2. Reduction of the equation  

 22
2

22 2 x
a
byxcdy

a
yb

−=−+   

to the form  c2 – dy = v2, 

where v = x –
a
by . 

Description of the construction of this parabola in the plane, including the proof 
that the curve described this way is the parabola determined by the equation. 
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Another determination of the corresponding diameter and latus rectum is also 
given.  
 
Problem I. Proposition 11.  
Given a point and a line, determine the locus of all points in the plane passing 
through both that are equidistant from this point and line. Construct this locus.  
 The locus turns out to be a parabola. The term focus or umbilical point 
(umbilicus) is introduced here. The term directrix is not used yet.  
 
Corollary 1. The line segment from a point D on a parabola to the focus is equal 
to the line segment from the projection of D on the symmetry axis to the vertex 
plus one fourth of the latus rectum. See Figure 2.2. 
 
Corollary 2. The angle between the line segment from a point on the parabola to 
the focus and the tangent to the parabola at this point is equal to the angle between 
this tangent and the symmetry axis. This tangent bisects the angle between the first 
line segment and the line parallel to the axis and through the point on the parabola.  
 

 
 

FIGURE 2.2 
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Chapter III 

In this chapter the following equations are considered:  
 

I. yx = f 2 

II.  22
2

fx
g

ly
−=  

III.  
g

lxfy
2

22 =−  

IV.  22
2

xf
g

ly
−=   

Theorem XI. Proposition 12. 
If the equation is yx = f 2, then the required locus is a hyperbola.  
 
The proof is based on the characteristic property of a hyperbola that is deduced 
from the definition of a hyperbola in Liber Primus, Theorem III (p. [180]).  
 We would now say that the asymptotes are taken as ‘coordinate axes’. In those 
days we would have said that the intersection point of the asymptotes is the origin 
of the abscissa-axis, which lies along an asymptote, while the angle between the 
asymptotes is the ‘given or chosen’ angle.  
 
Theorem XII. Proposition 13. 

If the equation is 
g

ly2
 = x2 – f 2, then the required locus is a hyperbola.  

The proof is based on Theorem IX of Liber Primus (p. [196]).  Using this property 
of the hyperbola, Jan de Witt identified ‘his’ hyperbola with the hyperbola of the 
ancient Greeks, and in particular that of Apollonius. 
 
Theorem XIII. Proposition 14. 

If the equation is y2 –f 2= 
g

lx2
, then the required locus is a hyperbola.  

The proof and associated construction are analogous to the argumentation for 
Theorem XII. In fact, the roles of x and y are interchanged. 
 
Theorem XIV. Proposition 15. 

If the equation is 22
2

xf
g

ly
−= , then the required locus is an ellipse (or a circle).   

The proof of this theorem is based directly on the characteristic property that Jan 
de Witt deduced in Liber Primus, Theorem XII (p. [205]) from his definition of 
the ellipse. Of course the curve is a circle if l = g and the ‘given or chosen’ angle 
is a right angle.   
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General Rule and method of reducing all equations that result from a 
suitable operation (when the locus is a hyperbola or an ellipse or a circle) 
to one of the four cases that have been explained in the four preceding 
theorems  

This general Rule states, without proof, that an equation of degree two that 
contains one or more of the terms xy, x2, y2, ax, and by, can be reduced to one of 
the forms of Theorems XI to XIV, at least if it represents a hyperbola, an ellipse, 
or a circle.  
The method amounts to replacing the combinations  
 xy ± ay and xy ± ax  
by vy, resp. vx, where v = x ±  a, resp. v = y ±  a, and splitting off a square from 
the combinations  
 x2 ± 2 ax, resp. y2 ± 2 ay 
by introducing the new variables  
 v = x ± a, resp. v = y ± a.   
As Jan de Witt did not have any parentheses at his disposal, from our point of 
view these computations are rather long-winded.  For more details see the notes to 
the translation of the passage in question.  

Example of the reduction of equations to the form of Theorem XI 

Reduction of the equation  
 yx – cx + hy = e2  
to the form  zv = f 2,  
where  z = y – c, v = x + h, and f 2 = e2 –ch. 
Description of the construction of this hyperbola in the plane, including the proof 
that the curve described this way is the hyperbola determined by the equation.  

Examples of the reduction of equations to the forms of Theorems XII and 
XIII 

 
1. Reduction of the equation 

 y2 + 
a

bxy2
 + 2cy = 

a
fx 2

 + ex + d2. 

The equation is first reduced to   

 
2

22

bfa

za

+
 = v2 –h2 + 

2

2222

bfa

cada

+

+  , 

where  z = y + 
a
bx  + c ,  v = x + 

2

2

22
2

bfa
abcea

+

+  ,   
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and  2h = 
2

2 2

bfa

abcea

+

+  . 

 
Then two cases are distinguished: 

i. h2 >
2

2222

bfa
cada

+

+ ;    

ii. h2 < 2

2222

bfa
cada

+
+ . 

In the first case the curve turns out to be a hyperbola opened towards the x-axis. In 
the second case the curve turns out to be a hyperbola with the rounded side 
towards the x-axis. 
 A detailed descriptio with complete demonstratio is given for these curves. 
 
2. Reduction of the equation 

 x2 + 2ay = 
a
bxy2  

to the form z2 –
4

6

b

a
 = 

2

22

b
va  , where z = y –

2

3

b
a  and v = x –

a
by . 

Again this includes a detailed determinatio and demonstratio. 
 
Problem II. Proposition 16. 
Given two points, find a third point with the property that the line segments drawn 
from this point to each of the two given points differ by a given distance and 
determine and describe the locus to which the required point belongs.  
    
This locus turns out to be a hyperbola, as can be concluded from the equation that 
is obtained, which is treated in Theorem XII. This can also be verified using the 
definition of a hyperbola derived from the ‘application problems’ from Greek 
antiquity. The two given points are designated as foci.  
 Jan de Witt tacitly assumes that the solution lies in the plane.  
 
Corollary 1. 
If from a point selected at random on a hyperbola, segments are drawn to both 
umbilici, the longest of them will exceed the shortest by the length of the 
transverse axis.   
 
Corollary 2. 
If from a point selected at random on a hyperbola, straight lines are drawn to both 
umbilici, then the line that bisects the angle enclosed by these straight lines 
touches the curve at this point and conversely.  
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Example of the reduction of equations to the form of Theorem XIV 

Reduction of the equation  

 y2 + 
a
bxy2  –2cy = – x2 + dx + k2 

to the form 

 z2 = 
2

2222

a
xbxa +−  + 

a

bcxdax 2−
 + c2 + k2,  

where  z = y –c + 
a
bx . 

 
This equation is then reduced to  

 
22

22

ba
za
−

= –v2 + h2 + 
22

2222

ba
akac

−

+ , 

where  2h = 
22

2 2
ba
bcada

−

−  

and  v = x –h. 
Assuming that a2 >  b2, this equation is further reduced to  

 ,22
2

vf
g

lz
−=  

where  22

2

ba

a

g

l

−
=  

and 22

2222
22

ba
akachf

−
+

+= . 

The equation has now been reduced to the form of Theorem XIV and the 
conclusion is that it represents an ellipse or a circle. Again a detailed descriptio 
and the associated demonstratio are given.  
 The case a2 < b2 is not considered; indeed, it would not lead to an example of 
Theorem XIV.  
 
Problem III. Proposition 17. 
Given two points, find a third point with the property that the segments drawn 
from this point to each of the given points are, taken together, equal to a given 
length, and determine and describe the locus to which the required points belong.  
 
This locus turns out to be an ellipse, as can be concluded from the equation that is 
obtained, which is treated in Theorem XIV. This can also be verified using the 
definition of an ellipse derived from the ‘application problems’ from Greek 
antiquity. Again the two given points are designated as foci.  
 Jan de Witt again tacitly assumes that the solution lies in the plane.  
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Corollary 1 
Taken together, the segments drawn from an arbitrary point on an ellipse to each 
of the umbilici are equal to the length of the transverse axis. 

Corollary 2 
If one draws straight lines from an arbitrary point on an ellipse to each of the 
umbilici, then the exterior bisection of the resulting angle will touch the curve at 
the aforementioned point.  
 Conversely, the tangent at this point forms equal angles with the extended line 
segments joining this point to the umbilici.   

Chapter IV 

General Rule to find and determine arbitrary plane and solid loci 

In this chapter a classification of the general equation of degree at most two in the 
undetermined quantities x and y is undertaken, and for each equation the 
corresponding line or curve is examined.  
 For the terms ‘plane’ and ‘solid’ loci, see the introduction.  
 
Jan de Witt distinguishes the following cases: 
 

1.  y = 
a
bx ,   or y = x, if a = b.    

    

 y = 
a
bx  ± c,   or y = c –

a
bx . 

He notes that one of the two quantities x or y may be missing. This remark is 
necessary because a and b are known positive quantities (line segments).  
         
2. y2 = dx     dy = x2 
 y2 = dx • f 2 or conversely  dy • f 2= x2  
 z2 = dx     dy = v2 
 z2 = dx • f 2    dy • f 2= v2. 
 

3.  y2= 
g

lx 2
 • f 2   yx = f 2 

 z2 = 
g

lx 2
• f 2 or even  zx = f 2 
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 y2 = 
g

lv2
• f 2   yv = f 2 

 z2 = 
g

lv2
• f 2   zv = f 2. 

Remarks: 
1.  A term of the form A • B represents three cases, namely, A + B, A – B, and  

BA +− . The case –A –B does not occur as A and B, as well as the left-hand 
side, must all be positive quantities.  

2.  In addition to the original variables x and y, variables v and z also occur in 
these equations. Two cases must be distinguished:  

i.  z has the form z = y ± c, z = y ± 
a
bx , or z = y ± 

a
bx  ± c, in which case v 

has the form v = x ± h, and therefore does not contain any term with y.  

ii.  v has the form v = x ± c, v = x ± 
a
by , or v = x + 

a
by ± c, in which case z 

has the form  z = y ± h, and therefore does not contain any term with x. 
Here a, b, c, and h are known positive quantities (line segments). 

3.  The general Rule states that every quadratic equation in the unknown 
quantities    x and y can be reduced to one of the forms mentioned in 2 and 3. 
For the forms zx  = f 2 and yv = f 2 we only allow z = y ± h and v = x ± k. De 
Witt does not prove this rule explicitly; rather, he refers to the methods 
applied in the examples. In what follows he shows that the equations 
mentioned in 2 and 3 all represent conics. See also Section 10 of the 
introduction.   

  
In order to help the reader make his way through this chapter, let us first state its 
the global lay-out.  
 
The following are treated in succession:  
i.  From p. [306] to [307]: the straight line 
ii.  From p. [308] to [314], line 4 from the bottom: the parabola given by one of 

the equations in the first column in 2, p. [305] (p. 41 of this summary) 
iii.  From p. [314], line 3 from the bottom, to p. [318], line 9 from the top: the 

parabola given by one of the equations in the second column in 2; that is, the 
converse of ii, where x and y have been interchanged 

iv.  From p. [318], line 10 from the top, to p. [330]: the equations in the first 
column in 3 where the term with x2 or v2 has a plus sign; these equations turn 
out to represent hyperbolas  

v.  From p. [331] to [332], line 7 from the bottom: the equations in the second 
column in 3, which also turn out to represent hyperbolas 

vi.  From p. [332], line 6 from the bottom to the end of the chapter: the equations 
in the first column in 2 in which the term with x2 or v2 has a minus sign, 
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while obviously f 2 has a plus sign; these equations turn out to represent 
ellipses or circles 

As in previous chapters Jan de Witt chooses an axis AB along which the abscissas 
x are measured out, in positive direction only, and an angle ABE under which the 
ordinates y are positioned. Of the curves treated here, only the part above the axis 
is considered.  

The straight line 

In case 1 on p. [305] (p. 41 in the summary) – the straight line – the following 
cases are distinguished and illustrated:  

y = x, y = 
a
bx , y = 

a
bx  + c, y = 

a
bx  – c,  y = c –

a
bx . 

First the constructions are given in the form of lists of instructions; this is 
followed by a meticulous proof that the abscissa and ordinate of any point on one 
of the constructed lines satisfy the equation in question.  For an illustration, see 
Figure 2.3 (p. [307] of the text).  
 

 
FIGURE 2.3 

The parabola 

In case 2 – the parabola – the left column is treated first. Nine cases are 
distinguished, each of which is split up into subcases. Jan de Witt begins with a 
list of strict instructions for the constructions. At the end of those he remarks that 
the proof that the constructed curves satisfy the corresponding equations is not 
difficult  (Quorum quidem omnium demonstratio perfacilis est, p. [311], line 6 
from the top). Only then does he begin with these proofs.  
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As far as the corresponding illustrations are concerned, note that Jan de Witt only 
gives the positions of the transverse axes with associated conjugate axes and 
vertices, but never draws a curve.  
 Moreover, for a given case he uses the same letter for the vertex in all 
associated subcases. For example in Case IX (p. [310] to p. [314]) we can 
distinguish nine subcases; in each of them the letter Q denotes the vertex of the 
corresponding parabola.  
 
Again the construction of the curves characterized above by equations is given 
without proof, in the form of lists of instructions.  
 This concerns the following situations: the figure that corresponds to Cases I to 
IX is Figure 2.4 (p. [308]).   
 

 
FIGURE 2.4 

 
I. y2 = dx 

This equation represents a parabola with transverse axis AB and 
vertex A, while the ordinate-wise applied lines make an angle with 
this axis that is equal to the given or chosen angle ABE.  

 
II. y2 = dx • f 2 

This equation represents a parabola with transverse axis on AB. For 
the vertex F we have:  

 If y2 = dx + f 2, then the vertex is F( –
d
f 2

, 0). 
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 If y2 = dx – f 2, then the vertex is F(
d
f 2

, 0). 

 If y2 = – dx + f 2, then the vertex is F(
d
f 2

, 0). 

 In the last case the parabola ‘has its opening to the left’. 
 
 III.  z2 = dx, where z = y ± c 

In this case the line y = c is the transverse axis if  z = y –c, while   
y = – c is the transverse axis if  z = y + c; the vertex is D(c, 0), 
resp. D ( – c, 0). 

 
 IV.  z2 = dx • f 2, where z = y ± c 

 In this case the line y = c is the transverse axis if z = y – c, while  
y = – c  is the transverse axis if  z = y + c; for the vertex L we 
have:  

 If z2 = dx + f 2and z = y ± c , then the vertex is L(– m,
2

d
f

  c). 

 If z2 = dx – f 2 and z = y ± c , then the vertex is L( m,
2

d
f

c). 

 If z2 = –dx + f 2and z = y ± c, then the vertex is L( m,
2

d
f c), but 

then the parabola ‘has its opening to the left’. 
 
In Cases I to IV the latus rectum is equal to d; the conjugate axis lies in the 
direction of line BE.   

 

 V.  z2 = dx, where z = y ± 
a
bx  

In this case one chooses a point M on BE so that AB : BM = a : 

b. The point M lies ‘above’ the line AB if  z = y +
a
bx   and 

‘below’ the line AB if z = y + 
a
bx ; the support of AM is then the 

transverse axis, the conjugate axis lies in the direction of BE; the 
corresponding vertex is A.  

 

 VI.  z2 = dx • f 2, where z = y ± 
a
bx  

Again one chooses AM as in Case V, but next one draws the 
lines FL through the points F and L (see II and IV for the 
definitions). These lines meet the lines AM at the points N.  The 
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following cases are distinguished with respect to the position of 
the parabola:  

 1.  z2 = dx + f 2 and z = y + 
a
bx : the line AM with equation   

y = –
a
bx  is the transverse axis, the corresponding vertex 

N  has abscissa AF = –
d
f 2

 

 2.  z2 = dx – f 2 and z = y + 
a
bx : the line AM with equation   

y = –
a
bx  is the transverse axis, the corresponding vertex 

N  has abscissa AF = 
d
f 2

 

 3.  z2 = – dx + f 2 and z = y + 
a
bx : the line AM with 

equation y = –
a
bx  is the transverse axis, the 

corresponding vertex N has abscissa AF = 
d
f 2

, but 

now the parabola ‘has its opening to the left’ 
 

 The cases z2 = dx + f 2 , z2 = dx – f 2 , and z2 = –dx + f 2 , where    

z = y –
a
bx , are treated analogously.  

 

 VII.  z2 = dx, where z = y +  
a
bx + c or z = y –

a
bx –  c  

 1.  z2 = dx, z = y + 
a
bx + c: the vertex is D(– c, 0), the 

transverse axis y = – 
a
bx –  c 

 2.  z2 = dx, z = y –
a
bx – c: the vertex is D(c, 0), the 

transverse axis y = 
a
bx  + c 

 

 VIII.  z2 = dx, where z = y + 
a
bx  –c or z = y –

a
bx  + c  
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 1.  z2 = dx, z = y + 
a
bx  – c: the vertex is D(c, 0), the 

transverse axis y = –
a
bx  + c 

 2.  z2 = dx, z = y –
a
bx  – c: the vertex is D(– c, 0), the 

transverse axis y = 
a
bx  – c 

In Cases VII and VIII the conjugate axes lie parallel to BE. 
 

 IX.  z2 = dx • f 2, where z = y ± 
a
bx  ± c 

  1.  z2 = dx + f 2: the abscissa of the vertex Q is –
d
f 2

 

  2.  z 2 = dx – f 2: the abscissa of the vertex Q is 
d
f 2

 

3.        z2 = – dx + f 2: the abscissa of the vertex Q is 
d
f 2

 

but now the parabola ‘has  its opening to the left’.  
 
The position of the corresponding axes and vertices can be found as described in 
VII and VIII. In all this concerns nine subcases. 
 
Finally we find the statement that in Cases V to IX the latus rectum p satisfies the 
proportion e : a = d : p, where e is defined by  AB : BM : AM = a : b : e (see 
Figure 2.4).  
 
In each of these nine cases, the parabolas are described through lists of 
instructions that use the parameters of the given equation. After the statements 
above, Jan de Witt proves that these parabolas, which seem to appear out of 
nowhere, are indeed represented by the equations he started out with.  
 
Jan de Witt concludes his treatment of the parabola with a short discussion of the 
‘converse’ cases, where x and y have been interchanged, that is,  
 dy = x2,  dy • f 2 = x2 ,  dy = v2,  dy • f 2 = v2, 
where successively       

 v = x ± c , v = x ± 
a
by  , or v = x ± 

a
by ± c. 
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The hyperbola   

In case 3 on p. [305] (p. 41 of this summary) Jan de Witt first considers the 
equations in the first column that represent a hyperbola, that is, whose terms with 
x2 or v2 have a plus sign; then he considers the equations in the second column 
that also represent a hyperbola, that is, 
 
 yx = f 2,  zx = f 2,  yv = f 2, and  zv = f 2, 
 
where  z = y ± c and v = x ± h.  
 
A. From p. [318] on the following modifications of the first column in 3, p. [305], 
are distinguished.   
 

I.   
g

lx 2
 = y2 – f2 or 

g
ly 2

 = x2 – f 2 

 

II.   
g

lx 2
 = z2 – f 2 or  

g
lz 2

 = x2– f 2, where 

  1.  z = y ± c 

  2.  z = y ± 
a
bx  

  3.  z = y ± 
a
bx  ± c  

 

III.   
g

lv 2
 = y2 – f 2 or 

g
ly 2

 = v2 – f 2, where v = x ± h  

IV.   
g

lv 2
 = z2 – f 2 or 

g
lz 2

= v2 – f 2, where v = x ± h and 

  1.  z = y ± c 

  2.  z = y ± 
a
bx  

  3.  z = y ± 
a
bx  ± c 

 
As one can see the cases that are distinguished are those where x and y, resp. x and 
z, y and v, or z and v have been interchanged. Again one receives the description 
of such a hyperbola as a list of instructions, followed by the proof that the 
coordinates of the points on it satisfy the initial equation.  
 Here are the results (see also Figure 2.6).  
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I.  
g

lx 2
 = y2 – f 2 or 

g
ly 2

 = x2 – f 2 

In the first case one chooses the transverse axis of the hyperbola along the 
line AX, through A and parallel to the line BE; in the second case one 
chooses the transverse axis along the line AB. The associated conjugate 
axes are parallel to respectively AB and BE. In both cases A is the center 
and 2f the length of the transverse diameter.  
   The associated latus rectum p is determined, that is, chosen, using the 
proportion 2f : p = l : g. The length 2d of the conjugate diameter then 
follows from the definition of the latus rectum using the proportion 2f : 
2d = 2d : p.   

  
In our further explanation and proof of the correctness of the construction 
we restrict ourselves to the second equation that was mentioned; Jan de 
Witt of course treats both equations. The point B on the curve is chosen 
as the intersection point of the curve with the line through B that makes 
the given angle with the abscissa-axis AE.  Jan de Witt now refers to the 
characteristic property of the hyperbola that he mentioned in Liber 
Primus as Theorem IX, Proposition 10, p. [196], illustrated with the 
figure on p. [198] (here Figure 2.5). For the situation in Figure 2.5, this 
characteristic property implies that: 

 

 
 

FIGURE 2.5 
 

That is,   ND 2 : (NA – AC)(NA + AC) = CH 2 :  AC 2. 
 

   

.::: 22222 ACCHCPGHNPNCND ==⋅
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If we now set  ND = y,  NA = x, AC = f, CH = d, then this property implies 
that     

  y2 : (x – f )(x + f ) = d 2 : f 2. 
The ratio d2 : f 2 can be determined as follows.  By the choice of p we have 
2f : p = l : g and by the definition of p we have   
 2f : 2d=2d : p,  
so that d 2  :   f 2 = p : 2 f = g : l 
and therefore  

  
g

ly 2
 = x2 – f 2. 

 In passing let us remark that Jan de Witt treats the cases l = g and l ≠ g 
separately, just as further on, in his treatment of the ellipse, where he treats 
the circle as a distinct case.  

Again he only shows that the coordinates of the points on the 
constructed curve satisfy the equation, but does not search for all points 
whose coordinates have this property. As a consequence he only finds one 
branch of the hyperbola. 

 
FIGURE 2.6 
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II.1.  
g

lx 2
 = z2 – f 2 or 

g
lz 2

= x2 – f 2, where z = y ± c  

In this case one chooses D(0, c) as center if z = y – c and D(0, – c) if z = y + 
c. After this the reasoning is analogous to that in I, where D takes the place 
of  A. This now concerns hyperbolas with transverse axis x = 0, respectively 
y = c if z = y – c and hyperbolas with transverse axis x = 0, respectively y = 
–c if z = y + c. The curves have been translated over a distance of ± c in the 
ordinate direction.  

 
 

 
FIGURE 2.7 
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II.2.  
g

lx2
 = z2 – f 2 or 

g
lz 2

 = x2 – f 2, where z = y ± 
a
bx  

In both cases one chooses the point A as center. Then one chooses the line 

AM with equation y = 
a
bx  if z = y – 

a
bx , and the line AM with equation y = 

– 
a
bx  if z = y + 

a
bx  (see Figure 2.7, which is the figure on p. [323]). 

 
In the first case the transverse axis of the required hyperbola lies on the line 
AW, parallel to BE. The conjugate axis lies in the direction of AM 

(corresponding to z = y + 
a
bx  or z = y –

a
bx ). 

In the second case the transverse axis of the required hyperbola lies on the 

line AM (corresponding to z = y + 
a
bx  or z = y –

a
bx ). The conjugate axis 

lies in the direction of AW.  
In the first case the length of the transverse diameter of the hyperbola (on 

AW) is equal to 2f. The corresponding latus rectum p is determined by the 
proportion  2f : p = a2l : e2g,  where we have    

AB : BM : AM = a : b : e.  
 

The length 2d of the conjugate diameter follows from the definition of the 
latus rectum as the third element of the proportion involving 2f and 2d, that 
is, from  

  2f : 2d = 2d : p. 

The ratio d2 : f 2 that is so important is then equal to 
la

ge
2

2
. 

   In the second case the length 2m of the transverse diameter of the 

hyperbola (on AM) is equal to 
a

ef2
. The vertices therefore lie at the 

intersection points of the lines AM with the lines x = ± a. In this case the 
corresponding latus rectum p is determined by the proportion 2m : p = e2l : 
a2g. The length 2d of the conjugate diameter again follows from the 
definition of the latus rectum as the third element of the proportion 
involving 2m and 2d, that is, from 2m : 2d = 2d : p. The ratio d2: m2 is then 

equal to 
le

ga
2

2
 . 

This description of the required hyperbola is again followed by a proof that 
the coordinates of the points on the constructed curve indeed satisfy the 
initial equations. 
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II.3.  22
2

fz
g

lx
−=   or 22

2

fx
g

lz
−= , where z = y ± 

a
bx ± c 

The reasoning is analogous to that in II.2, where D (0, c) takes the place of 

A if  z = y ± 
a
bx  – c and D(0, –c) if z = y ± 

a
bx  + c. Here too the curves 

have been translated over a distance of ± c in the ordinate direction.  
 

III.  22
2

fy
g

lv
−= or 22

2

fv
g

ly
−=  , where v = x ± h 

In this case one chooses I (h, 0) as center if  v = x –h and I (–h, 0) if v = x + 
h. The reasoning is analogous to that in I, where it now concerns 
hyperbolas with transverse axis on x = h respectively y = 0 if v = x – h, and 
hyperbolas with transverse axis on x = – h respectively y = 0 if v = x + h. 
The curves have been translated over a distance of ± h in the abscissa 
direction.  

IV.1.  22
2

fz
g

lv
−= or 22

2

fv
g

lz
−= , where v = x ± h and z = y ± c. 

In this case one chooses R( ± h, ± c ) as center, where the signs correspond 
to those chosen in  
 
 v = x ± h and z = y ± c 
 
The reasoning is analogous to that in I; this again concerns hyperbolas to 
which a parallel translation has been applied.  

 

IV.2. 22
2

fz
g

lv
−= or 22

2

fv
g

lz
−= , where  hxv ±= and 

a
bxyz ±=   

In this case one chooses S(± h, ± 
a

bh
) as center, where the signs 

correspond to those chosen in hxv m= and 
a
bxyz m= . The reasoning is 

analogous to that in II.2.  
 

IV.3. 
g

lv 2
 = z2 – f 2 or 

g
lz 2

 = v2 – f 2, where v = x ± h and z = y ± 
a
bx  ± c  
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In this case one chooses T(± h, ±
a

bh
± c) as center, where the signs 

correspond to those chosen in hv m=  and z = y mm
a
bx c. The reasoning is 

analogous to that in II.3. 
 
B. Four other cases where the required locus is a hyperbola 
 
This concerns the equations  
 
 1.  yx = f 2 

  2.  zx = f 2 
  3.  yv = f 2 
  4.  zv = f 2, 
where z = y ± h and v = x ± c and f, h, and c are known positive quantities (line 
segments).   
 
 

 
FIGURE 2.8 

 
1.  yx = f 2 

For the construction of the required hyperbola the line segment AC = f is 
measured out on the abscissa-axis AB (see Figure 2.8). Then the line 
segment CD = f is set out in the ordinate direction.  

The required locus will turn out to be a hyperbola with center A, with 
transverse axis, of length 2AD, lying along the support of AD (hence with 
vertex D) and with asymptote AB.  

That the coordinates of the points on this curve satisfy the equation 
2fyx =  simply follows from the characteristic property of the hyperbola 

that one finds in Liber Primus, Theorem 3, on p. [181]. Indeed, if we let E 
be the intersection point of the curve with the line through B under the 
given angle (in the ordinate direction), then by the property mentioned 
above AB.BE = AC2, that is, xy = f 2. 
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2.  zx = f 2, where z = y ± h  

In this case one does not choose A as vertex but the point G(0, ±h), where 
the sign corresponds to that chosen in  z = hy m . The reasoning is 
analogous to that in 1.  

 
3.  yv = f 2, where v = x ± c 

In this case one does not choose A as vertex but the point I(± c, 0), where 
the sign corresponds to that chosen in v = x m c. The reasoning is 
analogous to that in 1.  

 
4.  zv = f 2, where z = y ± h and v = x ± c 

In this case one does not choose A as vertex but the point K(± c, ± h), 
where the signs correspond to those chosen in  v = x m  c and  z = y hm .  
Again the reasoning is analogous to that in 1.  

  

The ellipse 

As mentioned before, this chapter and consequently the whole work, concludes 
with a discussion of the remaining cases in the first column in 3 on p. [305] (pp. 
40–41 of this summary), that is, those where the term with x2 or that with v2 has a 
minus sign. The term f 2 then of course has a plus sign. These equations turn out to 
represent ellipses or circles.  
Jan de Witt does not take exactly the equations in the column in question, but 

starts with the formula 22
2

xf
g

ly
−=  and treats it together with a number of 

modifications. He distinguishes the following cases:  
 

I.  22
2

xf
g

ly
−=  

 

II.  22
2

xf
g

lz
−= , where 

1.  z = y ± c 

2.  z = y ± 
a
bx  

3.  z = y ± c ± 
a
bx  
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III.  22
2

ν−= f
g

ly , where hx ±=ν  

 

IV.  
g

lz 2
 = f 2 –v2, where hx ±=ν and 

1.   z = y ± c 

2.   z = y ± 
a
bx  

3.   z = y ± c ± 
a
bx  

 
Here are the results he obtains (see Figure 2.9). 
 

I.  22
2

xf
g

ly
−=  

The claim is that this concerns an ellipse that can be described as follows: 
The center is A, the transverse diameter FAC lies on the support of AB and 
is of length 2f, so that FA = AC = f. The conjugate diameter lies in the 
direction of line BE, and the corresponding latus rectum is determined by 
the condition 2f : p = l : g. 

To prove that the described curve is the required locus, Jan de Witt 
takes a point (x,y) on the curve and using his geometric definition of an 
ellipse (see Liber Primus, Theorem XII, p. [205]) shows that the 
coordinates of this point satisfy the equation in question. He also remarks 
that if l = g and the angle ABE is a right angle, then the curve is a circle.  

We note that once more he has not proved that he has found all points 
that satisfy the equation.      

 

II.1.  22
2

xf
g

lz
−= , where z = y ± c 

This concerns an ellipse (or a circle) with center D(0, c) if z = y –  c and 
D(0, – c) if z = y + c.  

The reasoning is analogous to that in I, where D takes the place of A.  
 

II.2.  22
2

xf
g

lz
−= , where z = y ± 

a
bx   

Jan de Witt now constructs an ellipse as follows: The center is A, the 
transverse axis NAG lies on the support of AM, which has the following 
equation:  

   y = 
a
bx    (if z = y – 

a
bx )  
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 and   y = –
a
bx  (if z = y + 

a
bx ). 

The conjugate axis lies in the direction of line BE. The length 2m of the 
transverse diameter NG is 

a
ef2 , where we again have  

  AB : BM : AM = a : b : e  (see Figure 2.9). 
The corresponding latus rectum is determined by the condition  
 2m : p = e2l : a2g.   
To prove that the described curve is the required locus, Jan de Witt takes an 
arbitrary point (x, y) on the curve and using his geometric definition of an 
ellipse shows that the coordinates of this point satisfy the equation in 
question.  
 He also remarks that if e2l = a2g and the angle AME is a right angle, then 
the curve is a circle. 

 
 

 
FIGURE 2.9 

 

II.3.  
g

lz 2
= f 2 – x2, where z = y ± c ± 

a
bx  

 This concerns an ellipse (or a circle) with center D (0, c) if z = y – c ± 
a
bx  

and D (0, – c) if  z = y + c ± 
a
bx . The reasoning is analogous to that in II.2, 

where D takes the place of A.  

III.  
g

ly 2
 = f 2 – v2, where v = x ± h  
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 This concerns an ellipse with center I(h, 0)  if v = x –  h and I(–h, 0)  if v = 
x + h.  The reasoning is analogous to that in I, where I takes the place of A.  

 

IV.1.  
g

lz 2
 = f 2 – v2, where v = x ± h and z = y ± c 

This concerns an ellipse with center R(± h, ± c), where the signs correspond 
to those chosen hxv m=  and cyz m= . The transverse diameter lies on the 
line R parallel to AB and has length 2f. The corresponding latus rectum is 
determined by the condition that the ratio of the transverse diameter to this 
latus rectum is as l : g. The reasoning is analogous to that in II.1, where one 
of the four points R takes the place of A.   

 

IV.2.  
g

lz2
 = f 2 – v2, where v = x ± h and z = y ± 

a
bx . This concerns an ellipse 

whose center S is defined as the intersection point of the line x = ± h and the 

line y = ± 
a
bx .  The transverse diameter lies on the line y = ± 

a
bx   and has 

length 
a

ef2
. The corresponding latus rectum is determined by the condition 

that the ratio of the transverse diameter to this latus rectum is as e2l : a2g. 
The reasoning is analogous to that in II.2. 

 

IV.3.  
g

lz 2
 = f 2 – v2, where v = x ± h and z = y ± c ± 

a
bx . This concerns an 

ellipse whose center T is defined as the intersection point of the line x = ± h 

and the line through D (±h, 0) with equation y =± h ± 
a
bx . The transverse 

diameter lies on the line y = ± h ± 
a
bx  and has length 

a
ef2 . The 

corresponding latus rectum is determined by the condition that the ratio of 
the transverse diameter to this latus rectum is as e2l : a2g.  The rest of the 
reasoning is analogous to that in II.2 and II.3.  



 




